From Satisfactory Wiki
Jump to: navigation, search

This page is intended to cover various units of measurement used in Satisfactory as well as some derived units that are useful to know.

This page is also a proposal during wiki population for a standardized set of units to use on pages. Please use the talk page to discuss the merits of whether or not this page should or should not exist or if different units exist.

Base Units[edit | edit source]

Item Rates[edit | edit source]

The base unit for rates of items (either physical movement, production, or consumption) is items per minute. This may be shortened to items/min or items/m (though items/min is preferred for clarity and to avoid confusing minutes with meters).

Conveyors are measured in these units which describe the capacity of a belt at saturation. This does not describe the speed at which items move along the belt, though it should be proportional (given all items take up the same space on the belt).

Power generators consumption rates are measured in seconds/item. A multi-fuel generator may have different consumption rates for different fuels.

Buildings that produce items, such as miners, or consume and produce items, such as constructors, measure the inputs and outputs in items/min. Note that for a multi-input building like an assembler, the stated production rate will only be achieved if all inputs are provided at the stated (or higher) consumption rate.

Velocity[edit | edit source]

The velocity of objects (i.e. a tractor) is measured in kilometers per hour (km/h or kph for short).

Electrical Units[edit | edit source]

Electricity in Satisfactory has no concept of voltage or current as in real electrical systems. Everything is measured in megawatts, or MW for short. This is a real world unit of power equal to one million watts, also defined as one megajoule (MJ, a unit of energy) per second.

Power generators will have a stated power production. For example, a biofuel generator can produce up to 20 MW of power, while a coal generator can produce up to 50 MW of power.

Derived Units[edit | edit source]

Velocity[edit | edit source]

One can derive the velocity of items on a belt. The units for this are in meters per second (m/sec or m/s, though m/sec is preferred for clarity). A conveyor belt will have both a rating in terms of items/min and also a velocity in terms of m/sec. If all items take the same space on a belt, then these two units are proportional to each other.

This can be measured two ways. One way is to measure the time required for a single item to traverse a known distance. Taking the distance in meters and dividing by the time in seconds will give result in the velocity of items on the belt.

Example: An item traverses 8 meters of belt (two foundations length) in 6.67 seconds.

8 / 6.67

This results in a measured velocity of 1.20 m/sec.

Another means of measuring the velocity of items on the belt is to count how many items fit on a saturated belt of a unit length (i.e. 1 meter). Given the known rate of item flow on the belt the velocity can be derived.

(distance / items) * (items / minute) / 60

Example: If 22 items fit on 24 meter of conveyor that runs at 60 items/minute then...

(24 / 22) * (60 / 60) = 24 / 22

The result is that an item traverses the conveyor at a velocity of 1.09 meters per second.

If the Mk 1 conveyor is swapped out for a Mk 2 conveyor, we recalculate for 120 items/minute:

(24 / 22) * (120 / 60) = 24 / 22 * 2

The result then becomes 2.18 meters per second.

Note, these two values were both calculated using the same formula. Using the number of items on a belt of a known length is not reliable due to how items overlap at the edges of a belt segment. If counting the number of items on a 24-meter segment of belt, one might see 21 items, where counting the number of items on a 24-meter belt made up of three 8 meter segments may result in 22 items. Additionally, measuring the time required to traverse a known length is subject to human error (unless using video analysis in which case it can be somewhat accurate). The longer a belt is for both counting or timing items the more accurate the result is.

Production/Consumption Time[edit | edit source]

Production or consumption time is the inverse unit to item rates. Where item rates are measured in items/min, production or consumption time is measured in seconds per item. This can be shortened to sec/item or often just stated as sec (with an implied "per item"). Seconds can also be referred to as simply "s" as well, though sec would be preferred for clarity. This can be calculated from a stated item/min rate by dividing 60 by the rate.

Example: A constructor producing iron plates operating at 100% produced 15 items/min. By dividing 60 by 15 one can determine that iron plates require 4 sec to produce.

Energy[edit | edit source]

Energy, both in production of power and production of items can be measured in megajoules per item or MJ/item for short. The energy of one item may also be referred to simply as megajoules. As mentioned before, a watt is one joule / second and so a joule is equivalent to one watt-second (one watt consumed for one second). A megajoule is equal to 1,000,000 watt seconds.

Power Production[edit | edit source]

On the power production side of the equation, a fuel will have an energy rating. This can be considered the specific energy of an item in Satisfactory. Where real world specific energy would be measured in joules per unit mass, in this case the unit mass is "1 item". This is not stated in game but can be derived from known information.

Example: A single item of Coal in a 50MW Coal Generator can burn for 5.4 sec. That means each coal has a fuel value of 50 * 5.4 MJ = 270 MJ.

Example 2: A single item of Coal last for 5.4 sec. A Miner Mk.2 on a Pure Coal Node outputs item at 240/min, or 4/sec. Multiply both together, 5.4 sec * 4/sec = 21.6

In this case, a Miner Mk.2 can supply just enough coal to 21.6 Coal Generators. The Engineer can choose to build 22 Coal Generators, with the extra 0.4 Generators (20MW) to handle the peak power fluctuations.

Item Production[edit | edit source]

When it comes to power consumption, each item output from a building will have an amount of energy associated with it. The lower the amount of energy per item produced, the more efficient the building. This energy per item produced can be derived by taking the power consumption of the building and multiplying it by the production time for the item.

Example: A constructor producing iron plates operating at 100% produces a plate in 4 seconds. The building requires 4 MW to operate. This means that the iron plates require 4 * 4 or 16 MJ to produce.

Energy Efficiency[edit | edit source]

As hinted at in the item production section, the energy required to craft one item is a valuable unit for comparing energy efficiency. The clock speed page describes the calculations for how much power a building requires.

(Power required multiplier) = (Clock speed / 100)1.6

One can further derive from this formula the energy required for each item for a given clock rate.

(base seconds/item * 100 / clock speed) * power consumption * (clock speed / 100)1.6

The components are expanded out...

base seconds/item * 1001 * clock speed−1 * power consumption * clock speed1.6 * 100-1.6

The clock speed exponents are combined...

base seconds/item * 1001 * 100-1.6 * power consumption * clock speed0.6

The constants are combined...

base seconds/item * power consumption * (clock speed/100)0.6

The resulting formula...

power consumption * base seconds/item * (clock speed/100)0.6

Substituting in energy in place of MW * sec...

base energy/item / (clock speed/100)0.6

Example: Using the above, a constructor making iron plates at 100% requires 16 MJ/item. If one were to overclock to 200%, plugging in the above formula with 16 J/item as a base and a clock speed of 200% you get

16 MJ/item * 20.6

16 MJ/item * 1.51

The result is that at 200% overclock, each iron plate will require 24.25 MJ of energy.

Note: if the new production time of an item and the new power consumption of a building are already calculated, it is easier to then calculate the new energy per item by multiplying the two together.